BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells.
نویسندگان
چکیده
The breast and ovarian cancer susceptibility genes, BRCA1 and BRCA2, are likely to participate in DNA lesion processing. Oxidative lesions, such as 8-oxoguanine, occur in DNA after endogenous or exogenous oxidative stress. We show that deficiency for either BRCA1 or BRCA2 in human cancer cells leads to a block of the RNA polymerase II transcription machinery at the 8-oxoguanine site and impairs the transcription-coupled repair of the lesion, leading to a high mutation rate. Expression of wild-type BRCA1 from a recombinant adenovirus fully complements the repair defect in BRCA1-deficient cells. These results represent the first demonstration of the essential contribution of BRCA1 and BRCA2 gene products in the repair of the 8-oxoguanine oxidative damage specifically located on the transcribed strand in human cells. This suggests that cells from individuals predisposed to breast and/or ovarian cancer may undergo a high rate of mutations because of the deficiency of this damage repair pathway after oxidative stress.
منابع مشابه
Transcriptional regulation of the base excision repair pathway by BRCA1.
Inactivation of the breast cancer susceptibility gene BRCA1 plays a significant role in the development of a subset of breast cancers, although the major tumor suppressor function of this gene remains unclear. Previously, we showed that BRCA1 induces antioxidant-response gene expression and protects cells against oxidative stress. We now report that BRCA1 stimulates the base excision repair pat...
متن کاملTranscription through 8-oxoguanine in DNA repair-proficient and Csb(-)/Ogg1(-) DNA repair-deficient mouse embryonic fibroblasts is dependent upon promoter strength and sequence context.
Cells from Cockayne syndrome patients are characterized by a deficiency in transcription-coupled repair (TCR) of UV-induced lesions. These cells have also been shown to be sensitive to oxidative stress and defective in TCR of some oxidative lesions. Because some discrepancies about this pathway have been recently reported in the literature, we describe here a system that allows us to analyze th...
متن کاملTranscription-Coupled Repair of 8-oxoguanine: Requirement for XPG, TFIIH, and CSB and Implications for Cockayne Syndrome
Analysis of transcription-coupled repair (TCR) of oxidative lesions here reveals strand-specific removal of 8-oxo-guanine (8-oxoG) and thymine glycol both in normal human cells and xeroderma pigmentosum (XP) cells defective in nucleotide excision repair. In contrast, Cockayne syndrome (CS) cells including CS-B, XP-B/CS, XP-D/CS, and XP-G/CS not only lack TCR but cannot remove 8-oxoG in a transc...
متن کاملIN SILICO INVESTIGATION OF THE EFFECT OF LYCOPENE ON THE EXPRESSION OF BRCA1 AND BRCA2 INHIBITOR GENES IN PROSTATE CANCER
Background & Aims: Cancer is a genetic disease that results from mutations in genes that control cell activities. Prostate cancer is one of the most common types of cancers in men. Surgery, radiation therapy, hormone therapy, and chemotherapy are used to treat this disease. These treatments have numerous side effects after treatment, including impotence along with the high cost of treatment. In...
متن کاملDifferential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells.
Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 60 19 شماره
صفحات -
تاریخ انتشار 2000